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Introduction

The history of the calculus is a fascinating story, inspired by the search for solutions to interesting problems.
We do our students a disservice when we fail to share with them some of this exciting history. Over the
last two years, with support from the National Science Foundation, I have been developing modules for
teaching calculus concepts in a way that integrates the historical evolution of these concepts. Below are
some examples. Included are several interactive Java applets, produced using Geometer’s Sketchpad, which

require a Java-enabled Web browser. These can be identified by the icon. In addition, many of the
exercises provided require The Geometer’s Sketchpad and/or a CAS (Computer Algebra System) such as
Derive, Maple, Mathematica, or a TI Voyage 200 calculator.

Module 1: Curve Drawing Then and Now

It was René Descartes (1596–1650) who dramatically changed the mathematical landscape with his book
Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences (A Discourse on
the Method of Rightly Conducting the Reason and Seeking Truth in the Sciences). In La Géométrie, one
of three appendices of this book, Descartes showed how to describe geometric objects like curves by means
of an algebraic equation. This enabled him to take advantage of the power of algebra to solve geometric
problems. This idea of describing points in the plane with coordinates appears also in a work by Pierre de
Fermat from 1637. In fact, while Descartes used this idea to derive algebraic equations of certain curves that
he was interested in, it was Fermat who first used equations to define new curves. Later, Jacob Bernoulli
(1654–1705) and Isaac Newton (1643–1727) generalized this concept to other kinds of coordinate systems
such as polar.

The curves that Descartes was interested in were ones that could be described by some mechanical
motion. The mechanism depicted in Figure 1 appears in La Géométrie as an example of such curves, traced
out by points D, F , and H as the angle XY Z expands and contracts. Descartes showed how to derive the
equations of these curves.

Figure 1: A curve-drawing device from Descartes’ La Géométrie

Descartes’ curve-drawing device

1This work was supported by the National Science Foundation through Grant DUE-0442762.

http://www.dynamicgeometry.com/index.php
http://education.ti.com/educationportal/sites/US/productDetail/us_derive6.html
http://www.maplesoft.com/
http://www.wolfram.com/products/mathematica/index.html
http://education.ti.com/educationportal/sites/US/productDetail/us_v200.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Descartes.html
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00570001&seq=&view=50&frames=0&pagenum=1
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Fermat.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Fermat.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Bernoulli_Jacob.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Newton.html
http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00570001&seq=27&frames=0&view=50
http://users.etown.edu/s/sanchisgr/NSF2/Convergence/Descartes.htm


2

La Géométrie was a difficult work to read, as Descartes left much to the reader to work out for himself.
He wrote “I hope that posterity will judge me kindly, not only as to the things which I have explained, but
also to those which I have intentionally omitted so as to leave to others the pleasure of discovery.”

The popularity of Descartes’ La Géométrie is due largely to Franz Van Schooten (1615–1660), a Dutch
professor of mathematics who translated Descartes’ work into Latin and wrote a commentary on it filling in
many gaps. Van Schooten was particularly interested in conic section drawers and wrote a treatise on them.
He devised several instruments for drawing conic curves, as shown in Figure 2. Like Descartes’ instruments,
these generally consisted of a collection of straight rods hinged together in some way.

Parabola Drawer Ellipse Drawer Hyperbola Drawer

Figure 2: Franz Van Schooten’s Conic Section Drawers

Today’s graphing calculators easily generate graphs of curves by using an algebraic equation to generate
the coordinates of many points on the curve and then plotting them. Many, many points must be plotted
in order to obtain an accurate graph, so this would not have been a very practical method before the age
of computers. In contrast, the ancients drew curves by constructing specialized instruments or “curve-
drawers”. In the same way that ruler and compass can be used to draw straight lines and circles in a
continuous movement, the curve drawers devised by Van Schooten and others were used to draw other
curves of interest, particularly the conic sections, namely parabolas, ellipses, and hyperbolas.

In the exercises in this first module, several ellipse drawers from the history of mathematics are explored.
These include the familiar string construction, as well as an ellipse drawer due to Proclus (411–485), and
another one attributed to Archimedes (287 BCE - 212 BCE).
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String Construction Proclus’ Ellipse Drawer Archimedes’ Trammel

Figure 3: Ellipse Drawers

• Module 1 Exercises

•
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Module 2: Tangent Lines Then and Now

As long as mathematicians have been studying curves, they have been interested in the construction of their
tangent lines. Apollonius, who lived over two thousand years ago and studied the conic curves extensively,
found geometric methods for constructing tangent lines to parabolas, ellipses, and hyperbolas. In fact,
Propositions 33 and 34 of Book I of Apollonius’ great work The Conics give recipes for constructing tangents
to these curves.

Apollonius’ recipe for constructing tangent lines to parabolas is as follows:
Proposition I-33 Let P be a point on the parabola with vertex E, with PD perpendicular to the axis of

symmetry. If A is on the axis of symmetry so that AE = ED, then AP will be tangent to the parabola at P .

Parabola

Figure 4: Apollonius’ Recipe for constructing tangent lines to parabolas

Apollonius’ recipe for construction tangent lines to ellipses and hyperbolas is as follows:
Proposition I-34 Let P be a point on an ellipse or hyperbola, PB the perpendicular from the point to

the main axis. Let G and H be the intersections of the axis with the curve and choose A on the axis so that
|AH|
|AG| = |BH|

|BG| . Then AP will be tangent to the curve at P .

(a) Ellipse (b) Hyperbola

Figure 5: Apollonius’ Recipe for constructing tangent lines to ellipses and hyperbolas

Apollonius’ recipes for constructing tangent lines to conic curves are easy to implement, but his methods
were limited in that they could only be applied to a handful of curves. Of course, in the days of antiquity,
there weren’t that many curves that people were interested in studying, and so there wasn’t that much of a
need for a general method.

By the beginning of the seventeenth century, the collection of known curves had grown. Curves were
often described as the path of a moving point (e.g. a circle can be viewed as the path traced out by a
point on the outer edge of a spinning wheel). Indeed, the curve drawing instruments that were used to draw
curves, some of which were discussed in Module 1, underscored this notion of a curve as a path of a moving
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point. It was Gilles Personne de Roberval (1602–1675) who exploited this definition of a curve by viewing a
tangent line as the direction in which the point is moving at a particular instant.

Figure 6: Tangent as direction of motion

Consider, for example, a parabola, which, recalling Van Schooten’s parabola drawer, can be defined as
the path of point D below as G moves along AC.

Figure 7: Van Schooten’s Parabola Drawer

As G moves along AC, the point D as being pulled simultaneously toward the point B and toward the
horizontal line AC. Since |GD| = |BD|, the two forces are equal (if D moves a little toward B, it must move
by the same amount toward the line AB). By the parallelogram law, the direction of motion of D should be
the angle bisector of ]BDG. This angle bisector is actually the diagonal FH of the rhombus FGHB.

Both Apollonius and Roberval used geometrical methods to construct tangent lines. One of the first
algebraic method is due to René Descartes, one of the inventors of analytic geometry. It was well known
that a tangent line to a circle is always perpendicular to the radius of the circle. So Descartes’ idea was to
first find a circle tangent to the given curve. Then the tangent to that circle is the sought after tangent to
the curve.


Roberval.avi
Media File (video/avi)


VanSchootenParabola3.avi
Media File (video/avi)
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Figure 8: Descartes’ Method: Tangent of curve is perpendicular to radius of tangent circle

It was Pierre de Fermat who came up with essentially the method used today to construct tangent lines,
by viewing the tangent as the limit of secant lines through the given point A and a nearby point B on the
curve, where B approaches and eventually becomes A.

Figure 9: Fermat’s Method of Constructing Tangent Lines

Fermat’s method, although it worked in practice, was not without controversy. If A = (a, f(a)) is a point
on the curve y = f(x), and B = (a + e, f(a + e)) is a nearby point, the slope of the line AB is perfectly
well-defined as long as A and B are distinct (i.e. e 6= 0), but how do we define the slope when e = 0 so
that B = A? This seeming inconsistency invited much criticism, the most famous coming from the Irish
philosopher Bishop George Berkeley (1685–1753), in a pamphlet he published in 1734 called The Analyst.
Here Bishop Berkeley ridiculed the increments e, calling them the “ghosts of departed quantities”. In fact,
Descartes developed his method discussed above as a way to get around these difficulties. You can see below
how, as B approaches A, the circle with center O on the x axis that goes through A and B is well-defined,
even when A = B. However the line through A and B cannot be well-defined when A = B.


DescartesMethod.avi
Media File (video/avi)


FermatTangent.avi
Media File (video/avi)
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Figure 10: Descartes’ Method Compared to Fermat’s Method

Unfortunately, Descartes’ method did not work very well except for some simple curves, because of the
burdensome algebra involved in finding the unique circle with center on the x axis that intersects the curve
only once at A.

In spite of the problems with the logical foundations of the subject, nobody could dispute that the
techniques worked. And so Fermat is credited with the invention of the differential calculus since he developed
this method in 1629 and used it successfully to compute subtangents of a large collection of curves. It wasn’t
until the nineteenth century that the controversies and problems were satisfactorily addressed by the French
mathematician Augustin-Louis Cauchy (1789–1857), who gave a precise definition of derivative in terms of
a new concept called limit. This led to the definition that we use today.

• Module 2 Exercises

•
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Module 3: Optimization Problems Then and Now

Perhaps the most important application of the differential calculus is the solution of optimization problems,
where one wants to find the value of a variable that maximizes or minimizes a certain quantity. In this
module we look at the history of some of these problems and their solutions.

• Heron’s “Shortest Distance” Problem
One of the first non-trivial optimization problems was solved by Heron of Alexandria, who lived about
10–75 A.D. Heron’s “shortest distance” problem is as follows: Given two points A and B on one side
of a straight line, to find the point C on the line such that |AC|+ |CB| is as small as possible. Thus
in the picture below, one possible point C is shown, as well as the length of the path A → C → B.

Figure 11: A possible path from A to B

Click here to explore the solution to Heron’s problem. You can drag C to determine the
approximate length of the shortest path attainable.
To solve this problem mathematically, Heron noticed that if B is reflected across the line, to say B′,
then for any point C on the line, |CB| = |CB′|, and hence minimizing |AC| + |CB| is equivalent to
minimizing |AC|+ |CB′|. But clearly since the shortest path from A to B′ is a straight line, the point
C that minimizes |AC| + |CB′| should be the point of intersection of the line with the line segment
AB′. Any other path, such as A → C ′ → B′, will clearly be longer.

Figure 12: Heron’s solution of the “Shortest Distance” problem

Note that ]2 = ]3 by construction, and ]1 = ]3 since these are vertical angles. Therefore, ]1 = ]2.
This is the equal angle law of reflection. It was Euclid who, over three hundred years earlier, had
noted the now well-known reflection law of light:�



�
	Equal Angle Law of Reflection If a beam of light is sent toward a mirror, then the angle of

incidence equals the angle of reflection.

Heron appears to have been the first to observe that the reflection law implies that light always takes
the shortest path.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Heron.html
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As a matter of fact, the mirror in the equal angle law of reflection need not be flat. We may replace
the line in Heron’s problem by any concave curve S (a curve is concave if it lies entirely on one side
of any tangent line). In this case, the angles are measured with respect to the tangent line, and the
same argument used by Heron shows that if C is such that the angle of incidence equals the angle of
reflection, then |AC|+ |BC| is minimized.

Figure 13: Law of reflection for any concave curve

An interesting application of the law of reflection arises in the case of a light beam sent toward a
parabolic mirror, where the light beam is parallel to the axis of the parabola. A parabolic mirror
is one whose surface is generated by rotating a parabola about its axis. Suppose the parabola has
focus F and directrix L, and that the light beam

−→
GA hits the parabola at A. Recall from Roberval’s

construction of tangent lines to parabolas that the tangent line at A bisects the angle ∠FAB. Hence
]1 = ]2. Since ∠2 and ∠3 are vertical angles, ]2 = ]3. Hence ]1 = ]3. So by the Equal Angle Law
of Reflection, the light beam will be reflected in the direction

−→
AF . This will be true for any point A

on the parabola.

Figure 14: Light rays directed toward a parabolic mirror parallel to the parabola’s axis are all reflected
toward the focus F of the parabola

There is a famous story about Archimedes in which he is said to have used a parabolic mirror to defeat
the Roman General Marcellus. Supposedly, he tilted the mirror toward the sun in such a way that all
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the sun’s rays when reflected off the mirror went through the focal point. The heat generated at that
point caused a fire to ignite and destroy the entire Roman fleet.

Figure 15: Wall painting from the Stanzino delle Matematiche in the Galleria degli Uffizi (Florence, Italy).
Painted by Giulio Parigi (1571-1635) in the years 1599-1600.

• Snell’s Law and the Principle of Least Time
Euclid’s Law of Reflection, formulated around 300 B.C., tells us what happens when a beam of light
is reflected off a mirror. The Dutch physicist Willebrord Snell (1580 – 1626) was interested in the
phenomenon of refraction, which is the change in direction that occurs when a beam of light crosses a
boundary from one medium (say air) into another (say water). He observed that when the light beam
enters the denser medium at some point C on the line, its velocity decreases and its path bends toward
the normal to the line at C.
Snell’s experiments led him to the discovery of the following relationship, known as Snell’s Law:

sin θ1

sin θ2
= constant

Figure 16: Snell’s Law

Click here to investigate Snell’s Law. You can drag C to determine the approximate location
of the point that minimizes the time of travel along the path A → C → B.
In 1637, Fermat became interested in finding a theoretical derivation of Snell’s Law. Recall that Heron
had shown that if a light beam traveled from A to B by first reflecting off a line L, the path taken

http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Snell.html
http://users.etown.edu/s/sanchisgr/NSF2/Convergence/snell.htm
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was the one that would take the minimum time. Fermat reasoned that the same “least time” principle
would govern that path from A to B across the boundary L.
Fermat used the differential calculus (techniques which he himself developed by reasoning that the
slope of a tangent line at a local maximum or minimum must be zero) to determine the quickest path.
Suppose A = (a, b) lies above the x axis and B = (c, d) lies below the x axis, as in the picture below:

We wish to find the point C = (x, 0) on the x axis that minimizes the time of travel of a light beam
along the path A → C → B, assuming its velocity above the x axis is v1, and its velocity below the x

axis is v2. Since time = distance
velocity , the time of travel is

T (x) =

√
(x− a)2 + b2

v1
+

√
(x− c)2 + d2

v2

If we take the derivative and set it equal to 0, we have

1
2

[
(x− a)2 + b2

]−1/2 · 2(x− a)
v1

+
1
2

[
(x− c)2 + d2

]−1/2 · 2(x− c)
v2

= 0

which can be rewritten as

x− a

v1

√
(x− a)2 + b2

+
x− c

v2

√
(x− c)2 + d2

= 0

But since sin θ1 = x−a√
(x−a)2+b2

and sin θ2 = c−x√
(x−c)2+d2

, the above equation can be rewritten as

sin θ1

v1
− sin θ2

v2
= 0

or equivalently,

sin θ1

sin θ2
=

v1

v2

which is of course Snell’s Lawn. But whereas Snell had conjectured his law based on observation,
Fermat succeeded in giving a mathematical proof.
Fermat was led to investigate Snell’s law after reading a paper by Descartes on the subject. Fermat
thought Descartes’ work did not make sense, and he could not understand how Descartes was able to
arrive at the correct result using faulty and illogical arguments. Indeed, Fermat’s criticisms could be
interpreted as an accusation that Descartes, who made no mention of Snell in his work, had somehow
gotten hold of Snell’s experimental data, conjectured the correct law from the data, and then working
backwards invented an argument that made little sense but led to the correct conclusion. Needless to
say, Descartes did not take kindly to Fermat’s accusations!
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• L’Hôpital’s Pulley Problem and the Principle of Least Potential Energy
The first calculus textbook was written by the Marquis Guillaume-Francois-Antoine de L’Hôpital
(1661–1704). Best known for the famous rule that bears his name that is used to compute limits
of indeterminate forms, L’Hôpital was very interested in mathematics and particularly in the new
techniques of the calculus that had recently been developed by Isaac Newton (1643–1727) and Got-
tfried Wilhelm Leibniz (1646–1716). Consequently, he hired one of Leibniz’s best students, Johann
Bernoulli (1667–1748) to teach the calculus to him. L’Hôpital then took the notes he compiled from
Bernoulli’s lectures and organized them into a textbook called Analyse des Infiniment Petits. The book
contained the original results of Newton, Leibniz, and Johann Bernoulli, as well as Johann’s brother
Jakob Bernoulli (1654–1705). L’Hôpital has been justly criticized for giving little or no credit to these
mathematicians, presenting the mathematics as if it were his own. Indeed, many have suggested that
L’Hôpital’s Rule should really be called Bernoulli’s Rule, since it was taught to him by Johann! Jo-
hann Bernoulli was forced to keep silent during L’Hôpital’s lifetime since L’Hôpital had essentially paid
him for the right to use Bernoulli’s results in any way he wanted. After L’Hôpital’s death, however,
Bernoulli began to take credit for practically the entire book.
Being a textbook, Anlyse des Infiniment Petits contains a number of interesting problems that are
used to demonstrate the techniques of the new calculus. One of these problems is the famous pulley
problem, illustrated below.

Figure 17: L’Hôpital’s Pulley Problem

A (weightless) cable of length r is attached to the ceiling at point A. The other end of the cable is
attached to a pulley (point C). The end of another cable of length l is attached to the ceiling at point
B, where |AB| = d (d > r). At the other end of the second cable (point D) is attached a weigh. This
second cable passes over the pulley (so |BC| + |CD| = l), and the whole system is allowed to adjust
itself to reach a state of stationary equilibrium. The question is: How far below the ceiling is the
final position of the weight? The solution relies on the principle of minimum potential energy.
This means that the system will be stable when its potential energy is the least, i.e. when the weight

hangs as far below the ceiling as possible. Click here to explore L’Hôpital’s Pulley Problem and
identify the approximate equilibrium position for the example shown.

• Regiomontanus’ Hanging Picture Problem
Johann Müller (1436–1476), commonly known today as Regiomontanus, was perhaps the most influ-
ential mathematician of the fifteenth century. Although his contributions were mainly in the area of
trigonometry, we are interested here in the following problem that he posed in a letter he wrote in
1471: “At what point on the ground does a perpendicularly suspended rod appear largest?” In other
words, which point P on line L in the picture below maximizes the angle APB?

http://www-groups.dcs.st-and.ac.uk/~history/Posters2/De_L'Hopital.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Newton.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Leibniz.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Leibniz.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Bernoulli_Johann.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Bernoulli_Johann.html
http://www-groups.dcs.st-and.ac.uk/~history/Posters2/Bernoulli_Jacob.html
http://users.etown.edu/s/sanchisgr/NSF2/Convergence/Pulley.htm
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Figure 18: Regiomontanus’ problem: Which point P on L maximizes ]APB?

Click here to explore Regiomontanus’ Hanging Picture Problem and identify the point P that
maximizes ]APB for the example shown. This problem is the first optimization problem that appears
in the history of mathematics since the days of antiquity. It was probably inspired by questions of
perspective that Renaissance artists of that time period were grappling with. It is often stated in
modern calculus textbooks as follows: “A painting is hung flat against a wall. How far from the wall
should one stand to maximize the viewing angle subtended at his eye by the painting?”

Figure 19: Modern equivalent of Regiomontanus’ problem: How far from a wall should observer stand to
maximize his viewing angle of a picture on the wall?

In the above picture, the line L is drawn at the height of the viewer’s eye. We can impose a coordinate
system on the above picture, with L as the x axis, and A and B on the y axis, say A = (0, a) and
B = (0, b). Then the height of the painting is b− a, and the bottom edge of the painting is a + h units
above the floor, where h is the distance above the floor of the viewer’s eye.
The original solution to this problem, like Heron’s solution to the shortest distance problem, is geometric
and does not use calculus. Consider a circle that goes through points A and B and is tangent to the
line L. Let P be the point of tangency. Then P is the point on L that maximizes angle APB.

http://users.etown.edu/s/sanchisgr/NSF2/Convergence/Regiomontanus.htm
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Figure 20: Geometric solution to Regiomontanus’ Problem: P should be such that line L is tangent to the
circle through P , A, and B

To see this, let P ′ be another point on L. We claim that ]5 > ]3. Let H be the point of intersection
of the circle and BP ′. Then ]2 = ]5 since both angles subtend the same chord. Also, ]1 + ]2 =
]1 + ]3 + ]4, since both equal 180 degrees. Subtracting ]1 from both sides gives ]2 = ]3 + ]4.
Hence

]5 = ]2 = ]3 + ]4 > ]3

as was to be shown.

• Galileo and the Brachistochrone Problem
The last optimization problem that we discuss here is one of the most famous problems in the history
of mathematics and was posed by the Swiss mathematician John Bernoulli in 1696 as a challenge “to
the most acute mathematicians of the entire world”. The problem can be stated as follows: Given
two points on a plane at different heights, what is the shape of the wire down which a bead will slide
(without friction) under the influence of gravity so as to pass from the upper point to the lower point
in the shortest amount of time?”

Figure 21: Brachitochrone Problem: Which path from A to B is traversed in the shortest time?

This is the brachistochrone (“shortest time”) problem. This was a different kind of optimization
problem, since instead of asking for the value of a variable, among all possible values, that will maximize
or minimize something, it asks for the optimal function (or curve), among all possible curves. The
differential calculus does not provide all the tools necessary to solve this problem. So for the moment,
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we would like to discuss Galileo’s work relevant to this problem, which occurred in 1638, well before
the brachistochrone problem had been explicitly stated.
Galileo studied motion under gravity, showing that a body falling in space traverses a distance propor-
tional to the square of the time of descent. Using this law, he was able to compute the time of descent
of an object falling along an inclined plane from point A to point B, assuming no friction.

Time to travel from A to B is
√

2
g

d√
h

(1)

Figure 22: Galileo’s formula for time of descent along inclined plane

In equation (1), d is the distance between points A and B, h is the vertical distance between A and B,
and g is the acceleration due to gravity, approximately 980 cm/sec2.
Clearly the shortest path from from A to B is a straight line, but is this path the one that will take
the shortest time? For example, is there some point C such that if the body were to fall following a
straight line from A to C, and then a straight line from C to B, it would do so in less time than if it
traversed a straight-line path from A to B?

Galileo appeared to believe that the answer to the brachistochrone problem was a circle. Click
here to explore this problem and compare the times of descent along different polygonal paths. Was
Galileo correct?

• Module 3 Exercises

•
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Module 1: Ellipse Drawers

Exercises

Exercise 1.
The ancient Greeks defined an ellipse as the set of points P such that the sum of the distances from P

to the two fixed points F and F ′ (called the foci) is always constant. Probably one of the oldest ways of
drawing an ellipse is the string construction shown below, in which two ends of a string are attached to two
fixed pins F and F ′, and then a pen holds the string taut as it rotates around the pins. The first person
known to have written about the string construction of the ellipse was Anthemius of Tralles in the fifth
century, although it must certainly have been used earlier.

Figure 23: String Construction of Ellipse

(a) Assume a coordinate system with F and F ′ on the x axis and the origin half way between F and F ′, as
shown below:

Figure 24: Obtaining an Algebraic Equation of the Ellipse

Then the coordinates of F and F ′ are (±c, 0) for some c. If P = (x, y) is a point on the ellipse, then
we must have |PF |+ |PF ′| = d where d is a constant (the length of the string in the string construction).
Use the distance formula to translate |PF |+ |PF ′| = d into an algebraic equation involving x, y, c, and
d.

(b) Use a CAS (i.e. a Computer Algebra System such as Derive, Maple, or Mathematica, a TI Voyage 200
calculator, or a TI 89 graphing calculator) to solve the equation for y. You should get two equations,
one for the top half and one for the bottom half. Note: If your CAS gives you a formula that involves
the product of two square roots, rewrite it so that there’s only one square root.

(c) Use the equation to express the x intercepts of the ellipse in terms of c and/or d.
(d) Use the equation to express the y intercepts of the ellipse in terms of c and/or d.
(e) What values of c and d will generate an ellipse with x intercepts at (±5, 0) and y intercepts at (0,±3)?

Write the equations of the ellipse.


StringConstruction.avi
Media File (video/avi)

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Anthemius.html
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(f) The string ellipse construction is illustrated on Page 1 of the Geometer’s Sketchpad file EllipseDraw-
ers.gsp.
• To introduce a coordinate system, you first need to construct the origin, which should be half way

between F and F ′. To do this, select the points F and F ′ then choose Construct � Segment.
Then select this segment and choose Construct � Midpoint. Now select this point and choose
Graph � Define Origin.

• Double-click on the parameter c to change its value to the one you found in part (e). Also change
the value of d. Then click on the “Generate Ellipse” button to generate an ellipse. If you computed
c and d correctly, your ellipse should have x intercepts (±5, 0) and y intercepts (±3, 0).

• Choose Graph � Plot New Function and enter one of the equations you found in part (b).
Repeat to enter the other equation. The resulting graphs should match part of the curve generated
by the ellipse drawer. You can erase traces (ctrl-B) and click on the “Generate Ellipse” button
again to redraw the ellipse and verify that it exactly matches the graph of your function.

Exercise 2. The Dutch mathematician Franz Van Schooten (1615–1660) came up with the following simple
device for drawing ellipses. As the point E is dragged along AB, the point P traces out the curve.

Figure 25: Franz Van Schooten’s Ellipse Drawer

(a) Assume a coordinate system with origin at C and x axis through A and B. What should the lengths of
a = CD and b = DP be so that the ellipse generated will have x intercepts at (±5, 0) and y intercepts
at (0,±3)?

(b) Van Schooten’s ellipse drawer is illustrated on Page 2 of the Geometer’s Sketchpad file EllipseDrawers.gsp.
• Introduce a coordinate system with origin at C. Change the values of the parameters a and b to

the ones you found above, then click on the “Generate Ellipse” button to generate an ellipse. If you
computed a and b correctly, your ellipse should have x intercepts (±5, 0) and y intercepts (±3, 0).

• Go to Page 1 (the string construction), select the parameters c and d and the two functions, then
choose Edit � Copy. Then go to Page 2 (Van Schooten’s ellipse drawer) and choose Edit �
Paste. Finally select the two functions and choose Graph � Plot Functions. The graphs should
again match the curve generated by the ellipse drawer (you may need to redraw it by clicking the
“Generate Ellipse” button again).

Exercise 3. Proclus’ (418–485) ellipse drawer generated an ellipse by tracing a point inside a circle as it
rolled without slipping inside and tangent to another circle whose radius was twice as long.


VanSchootenEllipse2.avi
Media File (video/avi)
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Figure 26: Proclus’ Ellipse Drawer

(a) Assume a coordinate system with center at O and x-axis through O and A. If OA = b, QC = b
2 , and

QP = a, find the values of a and b that will generate an ellipse with x intercepts at (±5, 0) and y
intercepts at (0,±3).

(b) Proclus’ ellipse drawer is illustrated on Page 3 of the Geometer’s Sketchpad file EllipseDrawers.gsp.
• Introduce a coordinate system with origin at O. Change the values of the parameters a and b to

the ones you found above, then click on the “Generate Ellipse” button to generate an ellipse. If you
computed a and b correctly, your ellipse should have x intercepts (±5, 0) and y intercepts (±3, 0).

• As before, copy/paste the functions from Page 1 to Page 3 and graph them. The graphs should
again match the curve generated by the ellipse drawer.

Exercise 4. Finally, an ellipse drawer attributed to Archimedes is the trammel construction shown below.

Figure 27: Archimedes’ Trammel

The point B on segment AP is attached to the horizontal axis in such a way that it can slide along the
axis. Similarly, the point A is attached to the vertical axis and allowed to slide along it. The point P then
traces out the curve.
(a) Assuming a coordinate system with origin at O, determine the values of a = AB and b = BP such

that the ellipse generated by Archimedes’ trammel will have x intercepts at (±5, 0) and y intercepts at
(0,±3).


EllipseProclus.avi
Media File (video/avi)


EllipseArchimedes.avi
Media File (video/avi)
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(b) Archimedes’ ellipse drawer is illustrated on Page 4 of the Geometer’s Sketchpad file EllipseDrawers.gsp.
• Introduce a coordinate system with origin at O. Change the values of the parameters a and b to

the ones you found above, then click on the “Generate Ellipse” button to generate an ellipse. If you
computed a and b correctly, your ellipse should have x intercepts (±5, 0) and y intercepts (±3, 0).

• As before, copy/paste the functions from Page 1 to Page 3 and graph them. The graphs should
again match the curve generated by the ellipse drawer.
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Module 2: Drawing Tangent Lines from Apollonius to Fermat

Exercises

Exercise 5.
In this exercise , you will use Geometer’s Sketchpad to follow Apollonius’ recipes for construction of

tangents to conics. Open the Geometer’s Sketchpad file Tangents.gsp .
(a) Page 1 of the file Tangents.gsp contains a construction of a parabola, the set of points equidistant from

the point F and the line BC. Use the recipe provided by Apollonius in Proposition I-33 to construct a
tangent line at P . To do this, you will need to construct the axis of symmetry, the point D, the point
A so that AE = ED, and finally the tangent line AP , as in Figure 4. Your construction should work at
every point on the parabola, as you drag G along AB.

(b) Page 2 of the file Tangents.gsp contains a construction of an ellipse, using Van Schooten’s ellipse drawer.
Use the recipe provided by Apollonius in Proposition I-34 to construct a tangent line at P . [Hint: Note
that, for example when P is on the left half of the ellipse as in Figure 5(a), |AH| = |AG| + |GH|;
make this substitution in the proportion given in Proposition I-34 and solve for AG. Use the “Measure
Distance” and “Measure Calculate” menus to compute AG. Now construct A using the formula you
obtained as follows:

1. Select the calculated measurement AG and choose Transform � Mark Distance.
2. Select the point G and choose Transform � Translate. Select a polar translation vector with

Marked Distance and Fixed Angle π. Click Translate. The resulting point is A. Measure AG to
verify that the value agrees with your calculation.

Finally construct the tangent line PA.]

Exercise 6.

Figure 28: Figure for Exercise 2

(a) Use Apollonius’ method to find the y intercept of the tangent line to the parabola y = x2

4 + 1 at the
point C(4, 5). The parabola is shown above in Figure 28(a). Carefully draw the tangent line, then use
your sketch to determine the equation of the tangent line.

(b) Use Apollonius’ method to find the x intercept of the tangent line to the ellipse x2

25 + y2

9 = 1 at the point
C

(
3, 12

5

)
. The ellipse is shown in Figure 28(b). Carefully draw the tangent line and determine its slope.

(c) Use Apollonius’ method to find the x intercept of the tangent line to the hyperbola x2

16 −
y2

9 = 1 at the
point

(
5, 9

4

)
. The hyperbola is shown in Figure 28(c). Carefully draw the tangent line, then use your

sketch to determine the equation of the tangent line.

Exercise 7.

(a) Open page 3 (Parabola) of the file Tangents.gsp, which contains the construction of the parabola as the
locus of points P that are equidistant from a fixed point F (the focus) and a fixed line OB (the directrix).
You can see that as you drag the point labeled “Drag Me”, the distances BP and PF are always equal.
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There are two forces acting on P : one toward F , and one toward the horizontal line OB. Since
|FP | = |BP |, the two forces are equal (if P moves a little toward F , it must move by the same amount
toward the line). Hence the direction of motion should be the angle bisector of ]FPB. Construct the
angle bisector to verify that this does indeed appear to be tangent to the curve at every point of the
parabola.

(b) On page 4 (Ellipse) of the Geometer’s Sketchpad file Tangents.gsp is the construction of the ellipse as
the locus of points P such that the sum of P ’s distances from two fixed points F and F ′ is constant.
Note that as you drag the point labeled “Drag Me”, the sum |PF |+ |PF ′| remains constant.

Construct the tangent to the ellipse at any point P . [Hint: Since |PF |+ |PF ′| is constant, each time
P moves toward F it must move the same distance away from F ′. So there are two equal forces acting
on P , one toward one of the foci, the second away from the other focus.]

(c) On page 5 (Hyperbola) of the Geometer’s Sketchpad file Tangents.gsp is the construction of the hyperbola
as the locus of points P such that the difference of P ’s distances from two fixed points F and F ′ is
constant. Note that as you drag the point labeled “Drag Me”, the difference |PF − PF ′| remains
constant.

Construct the tangent to the hyperbola at any point P . Make sure your construction(s) work at
every point of the hyperbola.

(d) The cycloid, illustrated on page 6 of the Geometer’s Sketchpad file Tangents.gsp, played a very important
part in the history of the calculus, and its properties were studied extensively during the sixteenth and
seventeenth centuries. It is the path traced out by a point on the circumference of a circle as the circle
rolls on a horizontal line. Use Roberval’s method to construct the tangent line at any point P of the
cycloid. [Hint: At the instant when the rolling circle touches the horizontal line at a point A, the point
P is rotating about A, so P is moving in a direction perpendicular to AP .]

(e) (Extra Credit) An epicycloid is the path traced out by a point on the circumference of a circle as the
circle rolls outside and along the circumference of another circle. A hypocycloid is the path traced out by
a point on the circumference of a circle as the circle rolls inside and along the circumference of another
(larger) circle. These curves are illustrated on pages 7 and 8 of Tangents.gsp. You can change the relative
size of the circles by changing the value of m. Use Roberval’s method to construct the tangent at any
point to any epicycoid and to any hypocycloid.

Exercise 8. In this exercise you will use Descartes’ method to find tangent lines to the curve y =
√

4x.
The method consists of first finding a circle tangent to the curve. Then the tangent line to the curve will be
the same as the tangent line to the circle, which is easily constructed since it is perpendicular to the radius.
(a) Open page 9 of the file Tangents.gsp. This page contains a graph of y =

√
4x, the point A = (1, 2)

which is on this curve, a point O on the x axis, and a circle with center O and radius OA. In general,
depending on where point O is, this circle will cross the curve at two points A and B. Now drag O along
the x axis until the two points of intersection A and B merge into one. The resulting circle touches the
curve at a single point and so is tangent to the curve.

1. The x coordinate of O is given by the measurement xO. What is the x coordinate of the center of
the circle of tangency at the point A(1, 2)? [Hint: It should be an integer.]

2. Compute the slope of the radius OA.
3. We know that the tangent line to the circle at A is perpendicular to the radius OA. Compute the

slope of the tangent line.
4. Compute the equation of the tangent line, then graph it.

(b) The x coordinate of the point A on page 9 of the file Tangents.gsp can be changed by double-clicking on
the parameter A. Let A = (9, 6). Again, drag O until you obtain a circle tangent to the curve at A.

1. What is the x coordinate of the center of the circle of tangency? [Hint: Again, the answer is an
integer.]

2. Compute the slope of the radius OA.
3. Compute the slope of the tangent line.
4. Compute the equation of the tangent line, then graph it.
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Module 3: Optimization Problems Then and Now

Exercises

Exercise 9.

(a) Use calculus and a CAS to find the point C on the x axis for which |AC|+ |CB| is the shortest, where
A = (0, 4) and B = (10, 12).

(b) Use Heron’s method to find a formula for the x coordinate of the point C on the x axis that minimizes
|AC|+ |CB| if A = (0, a) and B = (b, c) Use your formula to verify your answer to part (a).

(c) Use calculus and a CAS to find the coordinates of the point C on the curve y = −x2, so that |AC|+ |BC|
is a minimum, where A = (0, 4), and B = (5,−3). Illustrate your solution on Geometer’s Sketchpad.
Your sketch should include the following:

1. a plot of the curve f(x) = −x2

2. a plot of the two points A and B
3. a plot of the point C that solves the problem
4. a graph of the tangent line to the curve at C (whose equation you will need to compute).
Measure the incidence and reflection angles to verify that they are equal.

Exercise 10. Use calculus and a CAS to compute the value of the x coordinate of the point C on the x
axis that minimizes the time of travel along the path A → C → B with A = (−3, 4), B = (2,−5), v1 = 1
unit/sec, and v2 = 2 units/sec. Construct a GS sketch that contains the points A, B, and C. Calculate the
ratio sin θ1

sin θ2
. Is this value the one predicted by Snell’s Law?

Exercise 11. Consider L’Hôpital’s pulley problem, illustrated below.

In the picture AB = d, AC = r, and BC + CD = l. Let x be the horizontal distance between G and B.
(a) Find an expression for |GA|.
(b) Find an expression for |GC|.
(c) Find an expression for |BC|.
(d) Find an expression for |CD|.
(e) Find an expression for |GD|.
(f) According to the principle of minimum potential energy, the system will reach equilibrium when |GD|

is maximized. Use calculus and a CAS to find the value of x for which |GD| is a maximum.
(g) Compute x when d = 12, r = 7, and l = 14.
(h) The pulley problem is illustrated on Page 1 of the GS file Optimization.gsp. Drag C to locate the

equilibrium position where GD is a maximum. Does GB agree with your solution above?
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Exercise 12.

(a) Use calculus and a CAS to find the solution of Regiomontanus’ hanging picture problem. You need to
find the value of x that maximizes θ.

Since f(x) = tanx is an increasing function, it is equivalent to maximize tan θ = tan(α − β) =
tanα− tanβ

1 + tanα tanβ
. You should be able to express this last expression all in terms of x, a, and b. Then use

calculus to find the value of x that maximizes this quantity.
(b) Suppose a six-foot tall adult comes to the museum with his three-foot tall child. They go into a room

where a large 12-ft high painting is hung on the wall so that the bottom edge of the painting is 8 feet
from the floor.

1. How far from the painting should each of them stand in order to maximize their individual viewing
angles?

2. Compute each of their maximal viewing angles. Express your answer in degrees.
3. Page 2 of the GS file Optimization.gsp illustrates Regiomontanus’ Hanging Picture, with the line

segment AB denoting the height of the picture, and the x axis representing eye level. Construct a
circle through A and B that is tangent to the x axis. (Note that the radius of this circle will have
length MO where M is the midpoint of AB.). Verify that the point of tangency P is the solution to
the Regiomontanus’ problem by measuring ]APB and verifying that it equals the maximal viewing
angle you found above for the six-foot adult. Change the values of the parameters to a = 5 and
b = 17 to verify that the measure of the resulting angle APB equals the maximal viewing angle you
found above for the three-foot child.

Exercise 13. Use a CAS to define the following two functions:

T (a, b, c, d, u) :=

√
(a− c)2 + (b− d)2 ·

(√
1960(b− d) + u2 − u

)
980(b− d)

V (a, b, c, d, u) :=
√

1960(b− d) + u2

T (a, b, c, d, u) computes the time of descent from A(a, b) to B(c, d) along a straight-line path, assuming
no friction and initial velocity u. V (a, b, c, d, u) gives the terminal velocity. We assume distance is measured
in centimeters and time in seconds.
(a) Compute T (5, 5, 0, 0, 0) to find the time of descent from A(5, 5) to B(0, 0) along an inclined plane,

assuming no friction and an initial velocity of 0.
(b) To compute the time of descent along the polygonal path (5, 5) → (3, 4) → (0, 0), you need to add the

time it takes along (5, 5) → (3, 4), which is T (5, 5, 3, 4, 0), and the time it takes along (3, 4) → (0, 0), which
is T (3, 4, 0, 0, u) where u is the terminal velocity from the first part of the path, i.e. u = V (5, 5, 3, 4, 0).
Hence compute

T (5, 5, 3, 4, 0) + T (3, 4, 0, 0, V (5, 5, 3, 4, 0))
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(c) Suppose we want a polygonal path (5, 5) → (x, y) → (0, 0) where (x, y) lies on the circle x2+(y−5)2 = 25.
Solving for y, where 0 ≤ y ≤ 5, we obtain y = 5 −

√
25− x2, so our point (x, y) must be of the form(

x, 5−
√

25− x2
)

in order to lie on the quarter circle. The time of descent for this path then is

T
(
5, 5, x, 5−

√
25− x2, 0

)
+ T

(
x, 5−

√
25− x2, 0, 0, V

(
5, 5, x, 5−

√
25− x2, 0

))
Use a CAS and calculus to find the value of x ∈ (0, 5) that minimizes the above quantity. Compare

the time of descent along this polygonal path to the time along the straight line path.
(d) Let C be the point that you found above. Galileo knew that any polygonal path (5, 5) → C → (0, 0)

where C is on the circle would take less time that the straight line path (5, 5) → (0, 0). He then
reasoned that if you added another point D on the circle to form the path (5, 5) → C → D → (0, 0),
the time of descent for this path would be less than the time for the path (5, 5) → C → (0, 0). Find
D = (x, 5 −

√
25− x2), so that the time of descent for the polygonal path (5, 5) → C → D → (0, 0) is

smallest. What is the total time for the path (5, 5) → C → D → (0, 0)?

Exercise 14.

(a) Use calculus to find the value of x so that the time of descent along (5, 5) → (x, 4) → (0, 0) is the
smallest. Let C = (x1, 4) be the point that minimizes the time of descent. Also compute the terminal
velocity v1 on the path (5, 5) → C.

(b) Use calculus to find the value of x so that the time of descent along C → (x, 3) → (0, 0) is the smallest,
where the initial velocity at C is v1. Let D = (x2, 3) be the point that minimizes the time of descent.
Also compute the terminal velocity v2 on the path C → D.

(c) Use calculus to find the value of x that minimizes the time of descent along D → (x, 2) → (0, 0) is the
smallest, where the initial velocity at D is v2. Let E = (x3, 2) be the point minimizes the time of descent.
Also compute the terminal velocity v3 on the path D → E.

(d) Finally, use calculus to find the value of x that minimizes the time of descent along E → (x, 1) → (0, 0),
where the initial velocity at E is v3. Let F = (x4, 1) be the point that minimizes the time of descent.
Also compute the terminal velocity v4 on the path E → F .

(e) Compute the time of descent along the the path (5, 5) → C → D → E → F → (0, 0). How does this
compare to the time of descent along the polygonal path (5, 5) → C → D → (0, 0) that you computed
in the previous exercise?

(f) Open Page 3 of the GS file Optimization.gsp. This sketch contains the construction of an (upside-down)
cycloid, a curve traced out by a a point on the circumference of a circle as it rolls along a straight line.
You can generate the cycloid by right-clicking on the center F of the rolling circle and selecting “Animate
Point”.

(g) Now obtain a graph of the entire curve by selecting F and P , and then choosing Construct � Locus.
(h) The curve goes through A(5, 5), but it doesn’t go through B(0, 0). You can find a cycloid that goes

through B by adjusting the size of the rolling circle (drag M up and down to to this). What is the radius
of the generating circle that produces a cycloid that goes through both A and B?

(i) It turns out that this cycloid is the answer to the brachistochrone problem (for any points A and B,
not just A = (5, 5) and B = (0, 0)). Plot the points on the polygonal path that you found above. Your
cycloid should be a pretty good fit. You should also construct a circle with center (0, 5) and radius 5, so
you can compare the actual solution to Galileo’s guess.




